
EQUIP: an Extensible Platform for Distributed Collaboration

Chris Greenhalgh,
Mixed Reality Laboratory, School of Computer Science and IT,

University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

Email: cmg@cs.nott.ac.uk

Abstract
EQUIP is a new software platform for data sharing and
collaboration being developed within the EQUATOR
Interdisciplinary Research Collaboration (IRC) in the
UK. EQUIP has a highly modular software organization,
incorporating dynamic code loading and multi-language
support (currently C++ and Java). It is also designed to
run on a wide range of devices, from handhelds to
graphical supercomputers, and has support for both
wired and wireless networking. Core to many EQUIP
applications is its data sharing service, which combines
work on Collaborative Virtual Environments with ideas
from tuple-spaces, to create an open, extensible and
interactive data sharing platform for general networked
and collaborative applications. Coupled with EQUIP’s
code-loading framework this support distribution of
computation as well as communication.

1. Introduction.

EQUIP [www.equator.ac.uk/technology/equip] is a
new software platform for data sharing and collaboration
being developed within the EQUATOR Interdisciplinary
Research Collaboration (IRC) in the UK
[www.equator.ac.uk].

Much of the pre-history of EQUIP is in the area of
Collaborative Virtual Environments (CVEs), which are
networked multi-user virtual environment designed to
support communication and collaboration through a
combination of media, typically including text, audio,
video and 3D graphics. In particular it builds on the
experiences of building and using the MASSIVE-1, 2 and
3 CVE systems [www.crg.cs.nott.ac.uk/~cmg]. All of
these systems have been used in quite extensive field
trials with significant numbers of (expert and non-expert)
users.

1.1. Goals.

In designing and developing EQUIP we have sought to
build on this experience, but also to address a number of
specific goals:
• highly modular software organisation, to support

maintainability and extensibility;
• run-time code loading, for extensibility and code

mobility and distribution;
• cross language to give access to development

environments with higher performance (C/C++) and
higher programmer productivity (Java).

In addition, within the EQUATOR IRC we are
increasingly interested in collaboration and distributed
interaction through mobile technologies, such as handheld
and wearable devices. Consequently EQUIP must also
support:
• deployment on a range of hardware platforms, from

handhelds to supercomputers (e.g. it has been used on
platforms ranging from an iPAQ to an ONYX2 with
multi-pipe Infinite Reality graphics for rendering in a
ReaCTor);

• support for both wired and wireless networking, and
the resultant variability in bandwidth and
connectivity.

2. Overview.

We have been developing EQUIP since January 2001,
and the current version (which is freely available from a
public CVS repository – see
[http://www.crg.cs.nott.ac.uk/~cmg/Equator/]) comprises:
• A cross-platform build system, which is Bamboo’s

[www.watsen.net/Bamboo].
• A portable run-time layer, currently Netscape

Portable Runtime (NSPR) for C++ and any JDK
(version 1.1.3 or above) for Java.

• A code loading and modularisation layer, which is
Bamboo for C++ and (currently) standard code
loaders and packages for Java.

• Core runtime libraries supporting standard facilities
such as memory management (for C++), serialisation
(dual language) and simple TCP/UDP networking.

• A language independent type-definition language and
code generator based on CORBA IDL valuetypes.
This provides code generation for cross-language
operations including serialisation, equality testing
and pattern matching.

• A shared data service, which incorporates ideas from
tuplespaces with our previous work on efficient and
timely data sharing for CVEs.

• A large set of modules (currently about 60) which
include standard cross-language data types (e.g. for
maths) and various clients and servers (e.g. an
extensible 3D renderer which uses VRJuggler
[www.vrjuggler.org] and OpenGL).

This is illustrated in figures 1 and 2.

Module

Module
Types:

IDL

IDL
compiler Class

implementation
files

Generated files
(serialisation,

equality, matching,
factories)

Loadable ‘plugin’
(DLL or Java

package)

Module spec.
(Makefiles)

Figure 1. Development time structure of an
EQUIP module.

 Implementation modules,
application modules

Implementation modules,
application modules

Implementation modules,
application modules

Interface/datatype modules Interface/datatype modules

Portable runtime: NSPR/JDK1.1+

Implementation modules,
application modules

Interface/datatype modules

Module loader: Bamboo/JDK1.1+

Core modules: serialisation, patterns,
networking…

Figure 2. Runtime structure of EQUIP.

3. EQUIP in Use.

Most applications of EQUIP to date revolve around its
shared data service. This supports easy authoring of
loosely coupled distributed systems for a range of
applications (based on pattern matching and application-
specific object definition). There is also increasing
support for wireless access.

Its performance can directly support interactive
applications such as simple shared scene graphs for
CVEs. To support higher performance applications (e.g.
streaming audio and video, complex visualizations) the
data service is used to share meta-data (e.g. session
descriptions, database references) and/or application-
specific dynamically loaded objects, which can then
handle local/distributed computation, and communicate
using other more streamlined communication
mechanisms.

3.1. Collaborative Visualisation Example.

As an example of the potential use of EQUIP, we
describe a simple collaborative visualisation session
which was staged using EQUIP between a user in the
Reality Centre at Nottingham and a user in the 4-wall
ReaCTor at UCL in London in February 2002. The
arrangement of machines and processes was as shown in
figure 3.

A single master dataspace was run at Nottingham, and
used to share objects including representations of user
avatars and visualization elements. Each site ran a
renderer as a client of this data space. The renderer –
which uses VRJuggler to handle window configuration
and input – requests all 3D drawable objects from the
dataspace. It forms these into an implied scene graph
which it traverses, asking each object to render itself in
turn. For some objects, such as the user’s avatars, this is a

simple geometry blob, for example read from a URL. For
other objects, such as visualization elements, this can
involve additional computation and dynamic rendering. In
this example a simple 3D scatter plot of database tables
was renderered by the class
equip.draw3d.pit.Object3DPit. Note that the code
implementing this class – including its rendering – was
dynamically loaded by each renderer process when the
object was first replicated from the dataspace. Dynamic
updates to the shared state allow the visualization to be
manipulated.

The EQUIP data service can also be used to share
other kinds of information. In this example, the user at
Nottingham had no tracking device with which to
navigate viewpoint of the Reality Centre; instead they

used an EQUIP client to simulate a joystick on another
machine, and published this information in the same
EQUIP dataspace. A custom VRJuggler input device was
then used to take this information published in EQUIP
and present it within VRJuggler as a normal analogue
input device to control navigation. The joystick simulator
can be transparently substituted with a client publishing
real joystick information, or with a client running on a
wireless handheld device (e.g. iPAQ with WaveLAN
card); we have demonstrated both of these alternatives in
EQUIP.

This trial used streaming IP audio based on the
MASSIVE audio service, which can be controlled via
session information shared in an EQUIP dataspace.

3 Pipe ONYX2 4 Pipe ONYX2

Nottingham Reality Centre
UCL ReaCTor

Intersense
tracker

Avatar
position and
navigation

PC

Joystick
simulator

navigation

Dataspace
Renderer Renderer

Key

Visualisation
object

User avatar

Physical user

Streaming audio
(MASSIVE audio service)

Figure 3. Collaborative Visualisation Example.

4. Future Directions.

EQUIP is under continuous and ongoing development.
At present the core development team is small, although
the user community is somewhat larger (it is used in
several sub-projects within the EQUATOR IRC, and also
in a number of other projects that involve members of the
IRC).

Areas for shorter-term development include:
• Better support for wireless use and intermittent

connectivity.
• Support for multi-process application configuration,

deployment and monitoring;

• More general framework for sensing and (physical)
environment modelling, e.g. for context-driven
interaction.

• Support for one or more open scene graphs, and for
more sophisticated rendering and interaction
techniques, e.g. multipass rendering.

5. Acknowledgements.

We would like to thank the UK’s Engineering and
Physical Sciences Research Council, for their support of
the EQUATOR IRC. We would also like to thank the
members of IRC – and others – who have contributed to
EQUIP, both through development and use.

